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Abstract

In the conventional lumped-mass (model) transfer matrix method (LTMM), one must use different frequency equation

and the associated initial parameters to determine the natural frequencies and the corresponding mode shapes of a beam

with different boundary (supporting) conditions as one may see from the Appendix at the end of this paper. Besides, the

eccentricity of each attached lumped mass is also neglected in the existing LTMM. The purpose of this paper is to present a

modified LTMM so that one may easily determine the natural frequencies and the corresponding mode shapes of a multi-

step Timoshenko beam with various boundary (supporting) conditions and carrying various concentrated elements with

eccentricity of each lumped mass considered, by using the same formulation developed from a beam with ‘‘free–free’’

boundary conditions.To this end, by considering the effect of rotary inertia of each beam segment and the eccentricity of

each attached lumped mass, the transfer matrix for a typical station carrying three kinds of concentrated elements is

derived. Meanwhile, by considering the shear deformation of each beam segment, the transfer matrix for a typical field is

also deduced. It has been found that, by changing the magnitude (from zero to infinity) of each concentrated element, one

may easily model many problems studied in the exiting literature concerned. The reliability of the presented approach has

been confirmed by the good agreement between the numerical results of this paper and those of the existing literature or the

conventional finite element method (FEM).

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Since the dynamic characteristics of some structural systems may be predicted by using a beam carrying
single or multiple concentrated elements, the literature concerned is plenty. For the free vibration analysis of
beams with various attachments, the lumped-mass (model) transfer matrix method (LTMM) was one of the
most popular approaches in early years [1–4]. Later, various classical analytical methods were also presented
[5–12]. In the last two decades, some researchers further devoted themselves to the study of continuous-mass
(model) transfer matrix method (CTMM) to improve the accuracy of the LTMM [13–15].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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From the existing literature concerning LTMM [4], one finds that the frequency equation and the associated
initial state variables (or initial parameters) required for the determination of natural frequencies and
corresponding mode shapes of a beam must be changed case by case according to its various boundary
(supporting) conditions. To improve the last drawback of the existing LTMM, this paper presents the
modified transfer matrices for each station and each field of a ‘‘free–free’’ beam. In which, in addition to the
conventional lumped mass mb;i and rotary inertia Jb;i due to each beam segment, three kinds of attachments
including a lumped mass ma;i (with rotary inertia Ja;i and eccentricity ei), a translational spring (with stiffness
constant kt;i) and a rotational spring (with stiffness constant kr;i) are also attached to each station. Besides, by
considering the effect of shear deformation of each beam segment, the transfer matrix for each field is deduced.
In such way, one may easily model the free end of a beam by setting kt;i ¼ 0 and kr;i ¼ 0, the pinned end of a
beam by setting kt;i � 1 and kr;i ¼ 0, and the clamped end of a beam by setting kt;i � 1 and kr;i ¼ 1, where i

denotes the station numbering. Since the last formulation based on the theory developed from a ‘‘free–free’’
beam carrying a number of concentrated elements is available for the beams with various boundary
conditions, use of the frequency equations and the associated initial parameters for various boundary
conditions required by the conventional LTMM (cf. Appendix of this paper) is not necessary. It is evident that
one may easily establish the mathematical model of a multi-step Timoshenko beam with various boundary
conditions carrying any sets of attachments by only changing the magnitudes of the relevant elements
ðma;i; Ja;i; ei; kt;i and/or kr;iÞ attached to each station and the cross-sectional area together with the length of
each beam segment associated with each field.

For convenience, the LTMM based on the theory of this paper is called LTMM1 and that based on the
classical (existing) approach is called LTMM0. To confirm the reliability of the presented theory, the lowest
five natural frequencies and/or the corresponding mode shapes of the uniform and non-uniform (multi-step)
beams with various classical and/or non-classical boundary conditions are determined. Good agreements
between the numerical results of LTMM1, LTMM0, the existing analytical methods and/or the conventional
FEM have been achieved.

Compared with FEM, the transfer matrix method (TMM) has the following advantages: (i) In this paper,
the order of transfer matrix for each field or station is 4� 4, therefore, the order of overall transfer matrix for
the entire beam is always 4� 4 no matter how many fields or stations composing of the entire beam; however,
this is not true for FEM. For each two-node beam element studied in this paper, each beam element has 4
degrees of freedom (dof’s), therefore, before considering the boundary conditions, the order of overall mass

matrix (or overall stiffness matrix) of the entire beam is 2ðnþ 1Þ � 2ðnþ 1Þ with n denoting the total number of
beam elements. For the last reasons, the computing speed of FEM will ‘‘significantly’’ decrease with the
increase of total number of beam elements (n), but that of TMM only ‘‘silghtly’’ decreases with the increase of
n. (ii) The state variables for FEM are displacements, velocities and accelerations, but those of TMM are
displacements, slopes, bending moments and shearing forces. For some problems like that studied in Ref. [16],
in addition to the mode ‘‘displacements’’ the associated mode ‘‘bending moments’’ (or ‘‘curvaures’’) of the
entire beam are also required; in such a case, the TMM will be more effective than FEM. (iii) In general, TMM
is used for the ‘‘free’’ vibration analysis; however, incorporated with the mode superposition method, TMM
can also provide a simple approach for the ‘‘forced’’ vibration analysis of beams subjected to moving loads as
one may see from Ref. [17]. On the other hand, for the title problem, the presented TMM may be one of the
simplest tools for checking the correctness of the FEM results.

2. Transfer matrices of a station, a field and a section

For the LTMM, a continuous beam must be replaced by a number of lumped masses mb;i (i ¼ 1 to nþ 1)
connected by a number of massless uniform beam segments with lengths ‘i. The positions occupied by the
lumped masses are called stations and the massless uniform beam segments responsible for the bending
stiffness of the entire beam are called fields. For convenience, a station together with a field is called a section

[3,4] as shown in Fig. 1(a), in which, ei denotes the eccentricity of the ‘‘attached’’ lumped mass ma;i with rotary
inertia Ja;i located at station i, and mi ¼ ma;i þmb;1 and Ji ¼ Ja;i þ Jb;1 with subscripts a and b referring to
attachment and beam segment, respectively, while Ei, Gi, Ai and I i denote the Young’s modulus, shear
modulus, cross-sectional area and area moment of inertia of the beam segment for field (i), respectively.
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Fig. 1. (a) Section i is comprised of station i and field (i); (b) free-body diagram of station i; (c) free-body diagram of field (i). Where

mi ¼ ma;i þmb;1 and Ji ¼ Ja;i þ Jb;1 with subscripts a and b referring to attachment and beam segment, respectively.
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In addition to the above-mentioned lumped mass mi and rotary inertia Ji, a translational spring with stiffness
constant kt;i and a rotational spring with stiffness constant kr;i are also attached to station i. Since the location
of station i is defined by x ¼ xi, the length of field (i) is given by ‘i ¼ xiþ1 � xi. The free-body diagrams for
station i and field (i) are shown in Figs. 1(b) and (c), respectively, with SEP referring to the static equilibrium
position of the un-deformed beam.

2.1. Transfer matrix of a station

From the free-body diagram for station i shown in Fig. 1(b), one has

Y R
i ¼ Y L

i ¼ Y i, (1)

cR
i ¼ cL

i ¼ ci, (2)

MR
i ¼ML

i �ma;ieio2Y L
i þ ½kr;i � ðJi þma;ie

2
i Þo

2�cL
i , (3)

VR
i ¼ VL

i þ ðkt;i �mio2ÞY L
i �ma;ieio2cL

i , (4)

where Y L
i ;c

L
i ;M

L
i and V L

i denote the transverse displacement, slope, bending moment and shearing force at
the ‘‘left’’ side of station i, respectively, while Y R

i ;c
R
i ;M

R
i and VR

i denote the same quantities at the ‘‘right’’
side of station i, respectively. It is evident that, Eqs. (1) and (2) denote the continuities of displacements and
slopes at station i, while Eqs. (3) and (4) denote the equilibriums of the bending moments and shear forces at
the ‘‘left’’ side and the ‘‘right’’ side of station i, respectively. Since o denotes the natural frequency of the entire
beam, all terms containing o2 in Fig. 1(b) and Eqs. (3) and (4) denote the inertia forces induced by the lumped
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mass mi (or ma;i) or inertia bending moment induced by the rotary inertia Ji (or the lumped mass ma;i and its
eccentricity ei).

To write Eqs. (1)–(4) in matrix form gives

fdgRi ¼ ½TS�ifdg
L
i , (5)

where

fdgRi ¼ fY
R
i cR

i MR
i VR

i g, (6a)

fdgLi ¼ fY
L
i cL

i ML
i V L

i g, (6b)

. (7)

In the last expressions, the symbol f�g denotes a column vector and ½TS�i is the transfer matrix of station i.
Note that the eccentricity ei of the lumped mass ma;i is not considered in the existing literature [1–4], besides,
the lumped mass mi and the rotary inertia Ji are determined as follows:

mi ¼ ma;i þmb;i, (8)

where ma;i is the ‘‘attached’’ lumped mass at station i and mb;i is the lumped mass at station i due to the
‘‘beam’’ segments connected to station i. If ri denotes the mass density of beam segment (i), then one has

mb;1 ¼
1
2
r1A1‘1 ðfor station 1Þ, (9a)

mb;nþ1 ¼
1
2
rnAn‘n ðfor final station nþ 1Þ, (9b)

mbi ¼
1
2
ðri�1Ai�1‘i�1 þ riAi‘iÞ ðfor each intermediate station iÞ. (9c)

Similarly, one has

Ji ¼ Ja;i þ Jb;i (10)

with

Jb;1 ¼
1
2
r1I1‘1 ðfor station 1Þ, (11a)

Jb;nþ1 ¼
1
2
rnIn‘n ðfor final station nþ 1Þ, (11b)

Jb;i ¼
1
2
ðri�1I i�1‘i�1 þ riI i‘iÞ ðfor each intermediate station iÞ, (11c)

where Ja;i is rotary inertia at station i due to the ‘‘attachment’’ and Jb;i is the rotary inertia at station i due to
the ‘‘beam’’ segments connected to station i. If the rotary inertia is neglected (such as the case for a
Euler–Bernoulli beam), then Jb;i ¼ 0 (i ¼ 1 to nþ 1), with nþ 1 denoting the total number of stations.

2.2. Transfer matrix of a field

From the free-body diagram for field (i) shown in Fig. 1(c), one has

V L
iþ1 ¼ V R

i , (12)

ML
iþ1 ¼MR

i � ‘iV
L
iþ1, (13)
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cL
iþ1 ¼ cR

i þ a
cM
i ML

iþ1 þ a
cV
i VL

iþ1, (14)

Y L
iþ1 ¼ Y R

i þ ðc
R
i þ gR

i Þ‘i þ aYM
i ML

iþ1 þ aYV
i VL

iþ1, (15)

where the symbols aYM
i and a

cM
i , respectively, denote the linear and angular displacements at station i þ 1

relative to station i due to action of a unit bending moment at station i þ 1 (i.e., ML
iþ1 ¼ 1); similarly, the

symbols aYV
i and a

cV
i , respectively, denote those due to action of a unit force at station i þ 1 (i.e., V L

iþ1 ¼ 1).
From the textbook regarding the strength of material [18], one has

aYM
i ¼

‘2i
2EiI i

; a
cM
i ¼

‘i

EiI i

, (16a,b)

aYV
i ¼

‘3i
3EiI i

; a
cV
i ¼

‘2i
2EiI i

. (17a,b)

The symbol gR
i in Eq. (15) denotes the shear deformation (or strain) at the right side of station i due to shear

force V R
i , i.e.,

gR
i ¼

V R
i

k0iGiAi

, (18)

where k0i and Gi are shear correction factor and shear modulus of the beam segment for field (i), respectively.
Since the shear force throughout the field (i) is constant so is the shear deformation gR

i ð¼ gL
i ¼ giÞ. If the shear

deformation is neglected (such as the case for a Euler–Bernoulli beam), then gR
i ¼ gL

i ¼ gi ¼ 0.
Substituting Eq. (12) into Eq. (13) gives

ML
iþ1 ¼MR

i � ‘iV
R
i . (13

0

)

Introducing the relationships given by Eqs. (12), ð13Þ0, (16)–(18) into Eqs. (14) and (15), one obtains

cL
iþ1 ¼ cR

i þ
‘i

EiI i

� �
MR

i �
‘2i

2EiI i

� �
V R

i , (14
0

)

Y L
iþ1 ¼ Y R

i þ ‘ic
R
i þ

‘2i
2EiI i

� �
MR

i �
‘3i

6EiI i

�
‘i

k0iGiAi

� �
VR

i . (15
0

)

To write Eqs. ð15Þ0, ð14Þ0, ð13Þ0 and (12) in matrix form yields

fdgLiþ1 ¼ ½TF �ifdg
R
i (19)

with

fdgLiþ1 ¼ fY
L
iþ1 cL

iþ1 ML
iþ1 V L

iþ1g, (20a)

fdgRi ¼ fY
R
i cR

i MR
i VR

i g, (20b)

. (21)
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This is the transfer matrix for field (i). It is noted that ‘nþ1 ¼ 0 with n denoting the total number of fields and
nþ 1 the total number of stations.
2.3. Transfer matrix of a section

From Eqs. (5) and (19) one obtains

fdgLiþ1 ¼ ½TF �i½TS�ifdg
L
i ¼ ½T �ifdg

L
i , (22)

where

fdgLiþ1 ¼ fY
L
iþ1 cL

iþ1 ML
iþ1 VL

iþ1g, (23a)

fdgLi ¼ fY
L
i cL

i ML
i V L

i g, (23b)

(24)

with

T11 ¼ 1�
‘3i

6EiI i

�
‘i

k0iGiAi

� �
ðkt;i �mio2Þ �

‘2i ðma;ieio2Þ

2EiI i

, (25a)

T12 ¼ ‘i þ
‘2i

2EiI i

½kr;i � ðJi þma;ie
2
i Þo

2� þ
‘3i

6EiI i

�
‘i

k0iGiAi

 !
ðma;ieio2Þ, (25b)

T21 ¼ �
‘2i

2EiI i

ðkt;i �mio2Þ �
‘iðma;ieio2Þ

EiI i

, (25c)

T22 ¼ 1þ
‘i

EiI i

½kr;i � ðJi þma;ie
2
i Þo

2� þ
‘2i ðma;ieio2Þ

2EiI i

, (25d)

T31 ¼ �½‘iðkt;i �mio2Þ þ ðma;ieio2�, (25e)

T32 ¼ kr;i � ðJi þma;ie
2
i Þo

2 þ ‘iðma;ieio2Þ . (25f)

The matrix ½T �i defined by Eq. (24) denotes the transfer matrix of section i. From Eq. (22) one sees that the

state variables at the ‘‘left’’ side of station i þ 1, fdgLiþ1 ¼ fY
L
iþ1 cL

iþ1 ML
iþ1 V L

iþ1g, may be obtained from those

at the ‘‘left’’ side of station i, fdgLi ¼ fY
L
i cL

i ML
i VL

i g, by using the transfer matrix of section i, ½T �i, given by

Eq. (24).
It is noted that the underlined terms in Eqs. (24) and (25) are due to the eccentricity ei of

the attached lumped mass at station i, ma;i, they are not considered in the existing LTMM [1–4].
Thus, if these terms are neglected, one obtains the following classical transfer matrix of section i for the
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Timoshenko beam

. (24
0

)

In practice, one may set ma;i ¼ 0, Ja;i ¼ 0, ei ¼ 0, kt;i ¼ 0 and/or kr;i ¼ 0 according to the actual situations.
For example, one may set ma;i ¼ Ja;i ¼ ei ¼ kt;i ¼ kr;i ¼ 0 for a station without any attachments; ei ¼ kt;i ¼

kr;i ¼ 0 for a station carrying only an ‘‘attached’’ lumped mass ma;i possessing rotary inertia Ja;i but without
eccentricity; ma;i ¼ Ja;i ¼ ei ¼ kr;i ¼ 0 for a station supported by a translational spring with stiffness constant
kt;i; etc.

3. Determination of natural frequencies and mode shapes

Repeated application of Eq. (22) yields the following relationships:

fdgL2 ¼ ½T �1fdg
L
1 (26a)

fdgL3 ¼ ½T �2fdg
L
2 ¼ ½T �2½T �1fdg

L
1 (26b)

fdgL4 ¼ ½T �3fdg
L
3 ¼ ½T �3½T �2½T �1fdg

L
1 (26c)

. . . . . . . . .

fdgLnþ1 ¼ ½T �nfdg
L
n ¼ ½T �n . . . ½T �3½T �2½T �1fdg

L
1 (26d)

fdgRnþ1 ¼ ½TS�nþ1fdg
L
nþ1 ¼ ½TS�nþ1½T �n . . . ½T �3½T �2½T �1fdg

L
1 ¼ ½T �fdg

L
1 (26e)

with

½T � ¼ ½TS�nþ1½T �n . . . ½T �3½T �2½T �1 ¼

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

2
66664

3
77775. (27)

In Eqs. (26e) and (27), ½TS�nþ1 denotes the transfer matrix of the final station nþ 1 and may be determined
from Eq. (7) by setting i ¼ nþ 1. However, one may also determine the value of ½TS�nþ1 from the transfer
matrix of a section defined by Eqs. (24) and (25) by setting i ¼ nþ 1 and ‘i ¼ ‘nþ1 ¼ 0 as mentioned next
Eq. (21).

The symbol ½T � in Eq. (26e) or (27) denotes the ‘‘overall’’ transfer matrix for the entire beam. It is a 4� 4
square matrix. From Eq. (26e) one obtains the relationships between the state variables at the ‘‘left side’’ of the
beam, fdgL1 ¼ fY

L
1 cL

1 ML
1 VL

1 g, and those at the ‘‘right side’’ of the beam, fdgRnþ1 ¼ fY
R
nþ1 cR

nþ1 MR
nþ1 V R

nþ1g,
to take the form

Y R
nþ1 ¼ T11Y L

1 þ T12c
L
1 þ T13ML

1 þ T14VL
1 , (28a)

cR
nþ1 ¼ T21Y L

1 þ T22c
L
1 þ T23ML

1 þ T24V L
1 , (28b)
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MR
nþ1 ¼ T31Y L

1 þ T32c
L
1 þ T33ML

1 þ T34VL
1 , (28c)

V R
nþ1 ¼ T41Y L

1 þ T42c
L
1 þ T43ML

1 þ T44VL
1 . (28d)

For a ‘‘free–free’’ beam carrying any sets of concentrated elements, the bending moment and shearing force at
its ‘‘left side’’, ML

1 and V L
1 , and those at its ‘‘right side’’, MR

nþ1 and V R
nþ1 are equal to zero, i.e.,

ML
1 ¼ 0; VL

1 ¼ 0, (29a,b)

MR
nþ1 ¼ 0; VR

nþ1 ¼ 0. (30a,b)

The substitutions of Eqs. (29) and (30) into Eqs. (28c) and (28d), respectively, lead to

T31Y L
1 þ T32c

L
1 ¼ 0, (31a)

T41Y L
1 þ T42c

L
1 ¼ 0. (31b)

Non-trivial solution for Eqs. (31a) and (31b) requires that

DðoÞ ¼
T31 T32

T41 T42

�����
����� ¼ 0. (32)

Eq. (32) is the frequency equation of a ‘‘free–free’’ beam, from which one may determine the natural
frequencies of the beam. Corresponding to each natural frequency on one may obtain the corresponding mode
shape fY gn ¼ fY 1 Y 2 � � � Y nþ1gn from Eq. (26a)–(26e), if the initial state variables fdg0 are given. For a
‘‘free–free’’ beam, the initial state variables (or initial parameters) are given by

fdg0 ¼

Y 0

c0

M0

V0

8>>><
>>>:

9>>>=
>>>;
¼

Y L
1

cL
1

ML
1

V L
1

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1

�T31=T32

0

0

8>>><
>>>:

9>>>=
>>>;
. (33)

In Eq. (33), the values of ML
1 and V L

1 are given by Eq. (29), while those of Y L
1 and cL

1 are determined from
Eq. (31a) by setting Y L

1 ¼ 1.
Although the above formulation given by Eqs. (29)–(33) are obtained from a ‘‘free–free’’ beam carrying a

number of concentrated elements, it is also available for the beams with various boundary (supporting)
conditions as one may see from the next section ‘‘Numerical results and discussions’’. This is because one may
obtain various boundary conditions by only adjusting the magnitudes of the stiffness constants of the
boundary translational spring and/or rotational spring supporting a ‘‘free–free’’ beam. However, according to
the existing LTMM [1–4], the natural frequencies and the corresponding mode shapes of a beam with different
boundary conditions are determined from different frequency equations together with different initial state
variables (or initial parameters) as one may see from the Appendix at the end of this paper. According to the
foregoing descriptions, it is easy to see the advantage of the modified LTMM presented in this paper.

For convenience, the LTMM based on the above formulation deduced from the theory of a ‘‘free–free’’
beam given by Eqs. (29)–(33) is called LTMM1 and the LTMM based on the classical formulation with
various frequency equations together with the associated initial parameters for various boundary (supporting)
conditions shown in the Appendix of this paper is called LTMM0, hereafter.

4. Numerical results and discussion

Unless particularly mentioned, the numerical results of this paper are obtained based on the following
physical quantities of the uniform beam: total length L ¼ 2:0m, diameter d1 ¼ 0:03m, mass density r1 ¼
7850 kg=m3 Young’s modulus E1 ¼ 2:068� 1011 N=m2, cross-sectional area A1 ¼ pd2

1=4 ¼ 7:069� 10�4 m2,
area moment of inertia I1 ¼ pd4

1=64 ¼ 3:976� 10�8 m4, reference mass ~m ¼ r1A1L ¼ 11:09833 kg, reference
rotary inertia ~J ¼ r1A1L3 ¼ ~mL2 ¼ 44:39332 kgm2, reference rigidity E1I1 ¼ 8:2224� 103 Nm2, reference
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rotational spring constant ~kr ¼ E1I1=L ¼ 4:1112� 103 Nm, reference translational spring constant ~kt ¼

E1I1=L3 ¼ 1:0278� 103 N=m. In the foregoing expressions, the subscript 1 refers to field 1 (or beam segment 1).

4.1. Validation of the presented theory and the developed computer program

In addition to comparing with the exact solutions of the uniform beams without any attachments
(i.e., ma;i ¼ Ja;i ¼ ei ¼ kt;i ¼ kr;i ¼ 0 for i ¼ 1 to nþ 1) in various classical boundary conditions (BCs), in this
subsection, the results of LTMM1 are also compared with the available ones of the beams carrying various
concentrated elements in the non-classical boundary conditions (BCs).

4.1.1. A uniform beam without attachments

For a uniform Euler–Bernoulli beam with dimensions and physical properties as shown at the beginning of

the current section, its lowest five non-dimensional frequency coefficients, bnL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

n :r1A1L4=ðE1I1Þ
4
q

(n ¼ 1–5), are listed in Table 1. In which, P–P, C–C and C–F denote the pinned–pinned, clamped–clamped
and clamped–free beams, respectively, with P, C, F representing the abbreviatons of ‘‘pinned’’, ‘‘clamped’’ and
‘‘free’’ respectvely Besides, the ‘‘Exact’’ values refer to the exact solutons for the non-dimensional frequency
coefficients bnL given by Ref. [19]. Since the total number of ‘‘stations’’ used throughout this paper is
nþ 1 ¼ 41, the total number of ‘‘fields’’ is n ¼ 40 with identical length for each beam segment ‘i ¼ L=n ¼

2=40 ¼ 0:05m (i ¼ 1–40) and ‘41 ¼ 0. For the results of LTMM1, a P–P beam is obtained from a ‘‘free–free’’
beam carrying nþ 1 sets of concentrated attachments by setting all the attachments to be equal to zero except
the stiffness constants at the left end (station 1) and the right end (station 41) of the beam: kt;1 ¼ 1:0� 1015,
kr;1 ¼ 0, kt;41 ¼ 1:0� 1015 and kr;41 ¼ 0, with unit of kt;i being N/m and that of kr;i being Nm (i ¼ 1–41).
Similarly, the C–C and C–F beams are obtained from the above-mentoned ‘‘free–free’’ beam by setting:
ðkt;1 ¼ kr;1 ¼ kt;41 ¼ kr;41 ¼ 1:0� 1015Þ and (kt;1 ¼ kr;1 ¼ 1:0� 1015 and kt;41 ¼ kr;41 ¼ 0), respectively. How-
ever, the results of LTMM0 are obtained based on the actual boundary conditions of a beam without any
attachment and the associated frequency equations together with the initial parameters given in Appendix of
this paper for the P–P, C–C and C–F beams, respectively. From Table 1, one sees that the non-dimensional
frequency coefficients obtained from LTMM1 are very close to the corresponding ones obtained from
LTMM0, besides, the agreement between the results of LTMM1 (or LTMM0) and the exact ones [19] is
excellent. Fig. 2(a) and (b) shows the lowest five mode shapes of the P–P and C–C beams, respectively. Where
the curves with symbols �, þ, m, ’ and % represent the 1st, 2nd, 3rd, 4th and 5th mode shapes obtained from
LTMM1 (or LTMM0), respectively, while those with symbols �, �, n, & and $ present the corresponding
Table 1

The lowest five non-dimensional frequency coefficients, bnL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

n � r1A1L4=ðE1I1Þ
4
q

(n ¼ 1–5), for a Euler–Bernoulli beam obtained from

presented LTMM1, classical LTMM0 and exact solutions

Boundary conditions Methods Non-dimensional frequency coefficients

b1L b2L b3L b4L b5L

P–P LTMM1a 3.1416 6.2832 9.4248 12.5664 15.7080

LTMM0a 3.1416 6.2832 9.4248 12.5664 15.7080

Exact [17] 3.1416 6.2832 9.4248 12.5664 15.7080

C–C LTMM1 4.7300 7.8532 10.9956 14.1372 17.2787

LTMM0 4.7300 7.8532 10.9956 14.1372 17.2787

Exact [17] 4.7300 7.8532 10.9956 14.1372 17.2788

C–F LTMM1 1.8750 4.6935 7.8532 10.9924 14.1320

LTMM0 1.8750 4.6935 7.8532 10.9924 14.1320

Exact [17] 1.8751 4.6941 7.8548 10.9955 14.1372

aTotal number of beam segments (or fields) is n ¼ 40.
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Fig. 2. The lowest five mode shapes of the uniform Euler– Bernoulli beam corresponding to the frequency coefficients ðbnLÞ listed in

Table 1: (a) P–P beam; (b) C–C beam: —K—, —þ—, —m—, —’—, —%— obtained from LTMM1; - - -	- - -, - - -�- - -, - - -n- - -,

- - -&- - -, - - -$- - - obtained from exact solutions [19].
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mode shapes obtained from the exact solutions [19]. It is evident that the lowest five mode shapes of the P–P
and C–C beams obtained from LTMM1 (or LTMM0) are very close to the corresponding ones obtained from
the exact solutions. This is under expectation, because the lowest five non-dimensional frequency coefficients
of the P–P and C–C beams obtained from LTMM1 (or LTMM0) are very close to those obtained from the
exact solutions as shown in Table 1.

The next example studied is a uniform Timoshenko beam with dimensions and physical properties given
by [20]: total length L ¼ 40 in, Young’s modulus E ¼ 30� 106 psi, shear modulus G ¼ 11:538� 106 psi
(or Poisons ratio n ¼ 0:3), cross-sectional area A ¼ 2:0� 6:9282 ¼ 13:856406 in2, area moment of inertia
I ¼ 55:42562 in4, mass density of beam material r ¼ 0:283 lbm=in

3, mass per unit length m0 ¼ rA ¼

3:9213629 lbm, radius of gyration rg ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
¼ 2:0 in, shear coefficient (or shape factor) k0 ¼ 5=6 and total

mass of the beam ~m ¼ rAL ¼ 156:8545159 lbm. The last given data are exactly the same as those of the
Timoshenko beam studied in Ref. [20]. The lowest five natural frequencies, on (n ¼ 1–5), of the Timoshenko
beam are shown in Table 2, where ‘‘Exact’’ refers to the exact solutions given by Ref. [20], ‘‘FEM’’ refers to the
natural frequencies obtained from FEM based on the element stiffness and mass matrices given by Ref. [21].
From Table 2, one sees that the results of LTMM1 are very close to those of FEM or Exact, particularly for
the lowest three natural frequencies. For this reason, the corresponding lowest five mode shapes obtained
from LTMM1 are also in good agreement with the exact ones given by Ref. [20] as one may see from
Figs. 3(a) and (b). Where the legends for the curves are similar to those for the curves shown in
Figs. 2(a) and (b). Note that the element mass matrix of FEM given by Ref. [21] is derived from the
distributed-mass model and the formulation of LTMM1 is based on the lumped-mass model, this will be one of
the main reasons that, in Table 2, the FEM results are closer to the exact solution than the LTMM1 results. In
general, reducing the size of each beam segment will improve the accuracy of the LTMM1 results.

4.1.2. A uniform beam carrying various concentrated elements

Figs. 4(a)–(c) show the examples for a uniform beam carrying various concentrated elements [8,9,12].
Among which, Fig. 4(a) shows a uniform cantilever beam carrying an intermediate translational spring kt;i and
a rotational spring kr;i located at the position x ¼ xi [9,12]. The beam shown in Fig. 4(b) is the same as that
shown in Fig. 4(a), except that an additional elastic-support lumped mass mnþ1 is attached to the free (right)
end of the beam with the stiffness constant of the translational spring being kt;nþ1 [12]. Fig. 4(c) shows a beam
with its left end spring-hinged, right end carrying an eccentric lumped mass mnþ1 with eccentricity enþ1 and
also constrained by an intermediate translational spring kt;i and a rotational spring kr;i [12]. It is evident that
Figs. 4(a)–(c) are the special cases of Fig. 4(d), where each of station Nos. 1, i and nþ 1 is attached by three
kinds of concentrated elements as shown in Fig. 1(a), but the eccentricities of m1 and mi are zero, and that of
Table 2

The lowest five natural frequencies, on ðn ¼ 125Þ, for a Timoshenko beam obtained from LTMM1, FEM and exact solutions

Boundary conditions Methods Natural frequencies, on (rad/s)

o1 o2 o3 o4 o5

P–P LTMM1a 121.1135 431.7565 844.6955 1304.1615 1782.9015

FEMb 121.1160 431.8731 845.5643 1307.3538 1791.0850

Exact [18] 121.1227 432.1613 847.6788 1315.0820 1810.8499

C–C LTMM1 242.4285 570.4705 965.9705 1395.0525 1844.8265

FEM 242.4485 570.7416 967.2862 1398.9924 1853.9050

Exact [18] 242.5021 571.4142 970.4942 1408.5430 1875.8482

C–F LTMM1 44.2085 245.8105 599.5665 1014.8815 1462.6305

FEM 44.2119 245.8795 600.0248 1016.6415 1467.4427

Exact [18] 44.2123 245.9332 600.7741 1020.1952 1477.9447

aTotal number of beam segments (or fields) is n ¼ 40.
bTotal number of beam elements is ne ¼ 40.
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Fig. 3. The lowest five mode shapes of the uniform Timoshenko beam corresponding to the natural frequencies ðonÞ listed in

Table 2: (a) P–P beam; (b) C–C beam: —K—, —þ—, —m—, —’—, —%— obtained from LTMM1; - - -	- - -, - - -�- - -, - - -n- - -,

- - -&- - -, - - -$- - - obtained from exact solutions [20].
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support tip mass; (c) a spring-hinged beam with in-span elastic constraints and carrying an eccentric tip mass; (d) a uniform F–F beam

carrying three kinds of concentrated elements (lumped masses mi , translational springs kt;i and rotational springs kr;i).
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mnþ1 is enþ1. It is evident that, if one sets kt;1 ¼ kr;1 ¼ 1, m1 ¼ 0, kt;nþ1 ¼ kr;nþ1 ¼ 0, mnþ1 ¼ 0 and enþ1 ¼ 0
for the beam shown in Fig. 4(d), then one obtains the beam shown in Fig. 4(a).

The dimensions of the beam and its physical properties are the same as those of the uniform Euler–Bernoulli

beam studied in the last subsection. The lowest three frequency coefficients, bnL ¼ ½o
2
nrAL4=

ðEIÞ�1=4 ðn ¼ 123Þ, for the beam shown in Fig. 4(a) are listed in Table 3 for the case of kt;i ¼ 0 and k
r;i ¼

kr;i= ~kr ¼ 1; 10; 100 with reference stiffness constant for the rotational spring ~kr ¼ E1I1=L ¼ 4:1112� 103 Nm
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Table 3

The lowest three frequency coefficients, bnL ¼ ½o
2
nrAL4=ðEIÞ�1=4 (n ¼ 1–3), for the cantilever beam with elastic constraints at xi ¼ xi=L as

shown in Fig. 4(a) with k
t;i ¼ 0, (kr;i ¼ 1, 10, 100) and ðx ¼ 0:2; 0:8Þ

xi ¼ xi=L k
r;i ¼ kr;i= ~kr Methods Frequency coefficients, bnL ¼ ½o
2
nrAL4=ðEIÞ�1=4

b1L b2L b3L

0.2 1 LTMM1 1.9247 4.7409 7.8679

Ref. [9] 1.9247 4.7437 7.8744

Ref. [12] 1.9247 4.7437 7.8744

10 LTMM1 2.1248 5.0353 8.0100

Ref. [9] 2.3018 5.5258 8.4162

Ref. [12] 2.1253 5.0375 8.0159

100 LTMM1 2.3009 5.5225 8.4105

Ref. [9] 2.3377 5.6753 8.6159

Ref. [12] 2.3014 5.5258 8.4162

0.8 1 LTMM1 2.0728 4.8535 7.8937

Ref. [9] 2.0740 4.8564 7.9005

Ref. [12] 2.0740 4.8564 7.9005

10 LTMM1 2.4497 5.5879 8.2446

Ref. [9] 2.4503 5.5904 8.2544

Ref. [12] 2.4503 5.5904 8.2544

100 LTMM1 2.5919 6.2539 9.2271

Ref. [9] 2.5916 6.2550 9.2425

Ref. [12] 2.5916 6.2550 9.2425
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as has been defined at the beginning of this Section 4. The location of the in-span rotational spring is at
xi ¼ xi=L ¼ 0:2 and 0.8, respectively.

From Table 3, one sees that the results of the LTMM1 are very close to the corresponding ones obtained
from the traditional analytical methods given by the Refs. [9,12]. Besides, Table 3 reveals that (i) the natural
frequencies of the beam increase with the increase of rotational spring stiffness (kr;i or k
r;i) if its distance from
the clamped end ðxi ¼ xi=LÞ is constant and (ii) the natural frequencies of the beam increase with the increase
of distance from the clamped end ðxi ¼ xi=LÞ if the rotational stiffness (kr;i or k
r;i) is constant. Note that, in
Table 3, the results of Refs. [9,12] are close to each other while the LTMM1 results are relatively far from the
last results, this is because the results of Refs. [9,12] are based on the exact closed form solution of the beam
equation while the results of the LTMM1 are the approximate ones. In general, one can improve the accuracy
of the LTMM1 results by reducing the size of each beam segment.

For the cantilever beam with in-span constraint and carrying an elastic-support tip mass as shown in
Fig. 4(b), Table 4 lists its lowest frequency coefficient ðb1LÞ for the case of no in-span constraint (i.e.,
kt;i ¼ kr;i ¼ 0), and the case of ðk
t;nþ1 ¼ kt;nþ1= ~kt ¼ 0; 10Þ and ðm
nþ1 ¼ mnþ1= ~m ¼ 0; 0:2; 0:6; 8Þ. From Table 4,
one sees that the results of LTMM1 are also very close to those of Refs. [8,12].

For the spring-hinged (with rotational stiffness constant kr;1) beam with in-span constraint (with stiffness
constants kt;i and kr;i) and carrying an eccentric tip mass (mnþ1 and enþ1) shown in Fig. 4(c), the influence of
the attachments (kr;1, kr;i, kt;i, Jnþ1, enþ1 and xi) on the lowest five frequency coefficients are listed in Table 5. It
is evident that, for all the cases studied, the results of LTMM1 are in good agreement with those of Ref. [12].

Based on the excellent agreement between the numerical results of the LTMM1 (or LTMM0) and the
corresponding ones of the analytical methods given by the existing literature as shown in Tables 1–5, one may
believe that the presented theory and the developed computer program for this paper should be reliable.

4.2. A uniform beam with overhang and carrying multiple concentrated elements

Fig. 5 shows a uniform Euler–Bernoulli P–P beam (diameter d ¼ d1 ¼ 0:03m and total length L ¼ 2:0m)
with overhang and carrying three identical sets of concentrated elements. Each set of concentrated elements
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Table 4

The lowest frequency coefficient ðb1LÞ for a cantilever beam with in-span constraint and carrying an elastic-support tip mass (cf. Fig. 4(b))

with k
t;i ¼ k
r;i ¼ 0, ðk
t;nþ1 ¼ 0; 10Þ and ðm
nþ1 ¼ 0; 0:2; 0:6; 8Þ

k
t;nþ1 ¼ kt;nþ1= ~kt
m
nþ1 ¼ mnþ1= ~m Methods b1L

0 0 LTMM1 1.8755

Ref. [8] 1.8751

0.2 LTMM1 1.6166

Ref. [8] 1.6164

0.6 LTMM1 1.3771

Ref. [8] 1.3757

8 LTMM1 0.7797

Ref. [8] —

10 0 LTMM1 2.6395

Ref. [12] 2.6389

0.2 LTMM1 2.3144

Ref. [12] 2.3144

0.6 LTMM1 1.9806

Ref. [12] 1.9808

8 LTMM1 1.1190

Ref. [12] 1.1209

Table 5

Influence of the parameters k
r;1, k
r;i , k
t;i , J
nþ1, e
nþ1 and xi on the lowest five frequency coefficients, bnL ¼ ½o
2
nrAL4=ðEIÞ�1=4 ðn ¼ 125Þ, of

the spring-hinged beam with in-span constraint and carrying an elastic-support eccentric tip mass shown in Fig. 4(c) with m
nþ1 ¼

mnþ1= ~m ¼ 5

k
r;1 k
r;i k
t;i J
nþ1 e
nþ1 xi Methods Frequency coefficients, bnL ¼ ½o
2
nrAL4=ðEIÞ�1=4

b1L b2L b3L b4L b5L

0 0 10 0 0 0.4 LTMM1 0.7096 3.3034 6.3056 9.4373 12.5765

Ref. [12] 0.7096 3.3034 6.3057 9.4373 12.5765

0 10 10 0 0 0.4 LTMM1 1.0354 3.3738 6.6382 9.7096 12.6079

Ref. [12] 1.0354 3.3738 6.6382 9.7096 12.6080

0.1 10 10 0 0 0.5 LTMM1 1.0963 3.3293 6.8280 9.4464 12.8998

Ref. [12] 1.0964 3.3293 6.8281 9.4465 12.8998

105 10 10 1 0.1 0.5 LTMM1 0.9590 1.8018 4.8435 8.3546 11.0203

Ref. [12] 0.9591 1.8018 4.8435 8.3546 11.0203

Note: k
r;1 ¼
kr;1

~kr

, k
r;i ¼
kr;i

~kr

, k
t;i ¼
kt;i

~kt

, J
nþ1 ¼
Jnþ1

~J
, e
nþ1 ¼

enþ1

L
, xi ¼

xi

L

.
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includes a lumped mass mi (with rotary inertia Ji and eccentricity ei), a translational spring (with stiffness
constant kt;i) and a rotational spring (with stiffness constant kr;i). The magnitudes of the concentrated
elements are: mi ¼ ~m ¼ 11:09833 kg, Ji ¼ 0:1 ~J ¼ 4:439332 kgm2, ei ¼ 0:01L ¼ 0:02m, kt;i ¼

~kt ¼ 1:0278�
103 N=m and kr;i ¼

~kr ¼ 4:1112� 103 Nm (for i ¼ 6; 21; 36), where i denotes the station numbering and the
total number of stations is nþ 1 ¼ 41. The digits in Fig. 5 represent the numberings for the associated stations,
and the locations of the three sets of concentrated elements are: xi ¼ xi=L ¼ 0:125; 0:5 and 0.875 (for
i ¼ 6; 21; 36), respectively. It is noted that the unit for all lengths in the figure is ‘‘meter’’.

The lowest five natural frequencies of the beam, on (n ¼ 1–5), are shown in Table 6. For comparisons, the
corresponding ones obtained from FEM and those for the same beam without any attachments are also listed
in Table 6. From the table one sees that the values of on (n ¼ 1–5) obtained from LTMM1 are very close to
those obtained from FEM, beside, the three sets of attachments significantly reduce the lowest five natural
frequencies of the uniform P–P beam with overhang.
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Table 6

The lowest five natural frequencies, on (n ¼ 1–5), for the uniform Euler–Bernoulli P–P beam with ‘‘overhang’’ and carrying three identical

sets of concentrated elements located at station Nos. 6, 21 and 36 (i.e., i ¼ 6; 21 and 36), respectively, as shown in Fig. 5

Loading conditions Methods Natural frequencies, on (rad/s)

o1 o2 o3 o4 o5

mi; Ji ; ei ; kt;i and kr;i LTMM1 47.8632 80.1400 168.9607 227.9254 396.5510

FEM 47.8667 80.1423 168.9607 227.9248 396.5531

No attachments LTMM1 147.8154 364.3721 797.8556 1621.5400 2555.4001

FEM 147.9235 365.1628 798.3614 1623.0366 2584.6892

Note: mi ¼ Ji ¼ ei ¼ kt;i ¼ kr;i ¼ 0 for i ¼ 1–41 except those with i ¼ 6; 21 and 36.

d1

L = 2

0.25 0.75

m6, J6, e6 m21, J21, e21
m36, J36, e36

41

kr,6
kr,21 kr,36

kt,6 kt,21 kt,36

1
6 21 36

1.50

31

0.25

Fig. 5. A uniform Euler–Bernoulli P–P beam (diameter d1 ¼ 0:03m) with ‘‘overhang’’ and carrying three identical sets of concentrated

elements. Each set of attachments includes a lumped mass mi (with rotary inertia Ji and eccentricity ei), a translational spring kt;i and a

rotational spring kr;i , located at station Nos. 6, 21 and 36 (i.e., i ¼ 6; 21 and 36), respectively. The magnitudes of the elements are:

mi ¼ ~m ¼ 11:09833kg, Ji ¼ 0:1 ~J ¼ 4:439332kgm2, ei ¼ 0:01L ¼ 0:02m, kt;i ¼ ~kt ¼ 1:0278� 103 N=m and kr;i ¼ ~kr ¼ 4:1112� 103 Nm.

(The unit for all the lengths in the figure is ‘‘meter’’.)
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It is noted that, for the beam showing in Fig. 5, an additional effort must be paid if the classical LTMM0 is
used to determine its natural frequencies because of the existence of the intermediate rigid support (at station
No. 31), however, this is not true for the presented LTMM1.

4.3. A ‘‘stepped’’ beam carrying multiple sets of concentrated elements

The purpose of this subsection is to study the availability of the presented LTMM1 for the free vibration
analysis of the non-uniform beams. All conditions of the current stepped P–P beam are the same as the
uniform beam with overhang studied in the last subsection (cf. Fig. 5) except that the intermediate rigid
support at station No. 31 is moved to the right end of the beam (at station No. 41) and there exists two step
changes in cross-sections with diameters of the stepped beam segments to be d1 ¼ 0:03m, d2 ¼ 0:04m and
d3 ¼ 0:05m, as one may see from Fig. 6. The lowest five natural frequencies of the stepped beam, on (n ¼ 1–5),
obtained from LTMM1 and FEM are listed in Table 7(a) for the Euler–Bernoulli beam and in Table 7(b) for
the Timoshenko beam. In each table, six cases are studied: In Case 1, the magnitudes of all the attachments are
equal to zero except the three lumped masses ðm6 ¼ m21 ¼ m36 ¼ 11:09833 kgÞ located at station Nos. 6, 21
and 36, respectively, without eccentricities (i.e., e6 ¼ e21 ¼ e36 ¼ 0). In Case 2, all conditions are the same as
Case 1 except that the three rotary inertias ðJ6 ¼ J21 ¼ J36 ¼ 4:439332 kgm2Þ of the three lumped masses are
considered. In Case 3, all conditions are the same as Case 2 except that the eccentricities ðe6 ¼ e21 ¼ e36 ¼

0:02mÞ of the three lumped masses are also considered. In Case 4, all conditions are the same as Case 2 but the
three lumped masses together with their rotary inertias are replaced by three identical translational springs
ðkt;6 ¼ kt;21 ¼ kt;36 ¼

~kt ¼ 1:0278� 103 N=mÞ together with three identical rotational springs ðkr;6 ¼ kr;21 ¼

kr;36 ¼
~kr ¼ 4:1112� 103 NmÞ. In Case 5, all the three sets of concentrated elements (including the effect of

eccentricities) are considered. In the final Case 6, the P–P beam without any attachment is studied.
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Table 7

The lowest five natural frequencies, on (n ¼ 1–5), for the three-step P–P beam carrying three identical sets of concentrated elements located

at station Nos. 6, 21 and 36 (i.e., i ¼ 6; 21 and 36), respectively, as shown in Fig. 6

Cases Loading conditions Methods Natural frequencies, or (rad/s)

o1 o2 o3 o4 o5

(a) For Euler–Bernoulli beam

1 mi only LTMM1 74.9470 229.3248 460.0856 1153.3536 2023.0598

FEM 74.9429 229.3712 460.0933 1153.5451 2024.3200

2 mi and Ji LTMM1 52.7337 104.4908 268.8823 279.4975 468.0654

(no eccentricities) FEM 52.7324 104.4947 268.8604 279.5016 468.0792

3 mi , Ji and ei LTMM1 52.7189 104.4501 268.0518 280.2568 467.2115

FEM 52.7176 104.4539 268.0319 280.2588 467.2283

4 kt;i and kr;i only LTMM1 121.6619 414.0007 1100.3243 1866.7750 2900.6343

FEM 121.6459 414.2661 1100.9683 1867.2391 2900.7577

5 mi , Ji , ei, LTMM1 57:3317 108:1611 268:9405 281:6411 467:3322
kt;i and kr;i FEM 57.3303 108.1651 268.9206 281.6434 467.3489

6 No attachments LTMM1 108.0544 402.7993 973.7171 1861.8415 2662.7367

FEDM 108.0434 403.0264 974.9014 1862.0029 2666.4724

Note: mi ¼ Ji ¼ ei ¼ kt;i ¼ kr;i ¼ 0 for i ¼ 1–41 except those with i ¼ 6; 21 and 36.

(b) For Timoshenko beam

1 mi only LTMM1 74.8984 228.9752 458.1580 1144.7258 1998.9980

FEM 74.8942 229.0217 458.1680 1144.9611 2000.4430

2 mi and Ji LTMM1 52.7254 104.4760 267.7368 278.2624 466.0457

(no eccentricities) FEM 52.7242 104.4799 267.7156 278.2669 466.0619

3 mi , Ji and ei LTMM1 52.7106 104.4353 266.9065 279.0217 465.2039

FEM 52.7094 104.4392 266.8873 279.0242 465.2230

4 kt;i and kr;i only LTMM1 121.5682 413.2632 1095.4202 1852.5828 2866.6001

FEM 121.5522 413.5294 1096.0910 1853.2121 2867.3548

5 mi , Ji, ei , LTMM1 57:3213 108:1464 267:7999 280:4112 465:3248
kt;i and kr;i (�0.0181%) (�0.0136%) (�0.4241%) (�0.4367%) (�0.4295%)

FEM 57.3199 108.1505 267.7806 280.4138 465.3437

6 No attachments LTMM1 107.9888 402.1009 970.0299 1847.1258 2634.5980

FEM 107.9779 402.3287 971.2252 1847.4502 2638.7199

Note: (i) mi ¼ Ji ¼ ei ¼ kt;i ¼ kr;i ¼ 0 for i ¼ 1–41 except those with i ¼ 6; 21 and 36.

�n% ¼ ðonTimosh �onEulerÞ � 100%=onEuler, n ¼ 1–5, with onTimosh and onEuler denoting the nth natural frequencies of the Timoshenko

beam and Euler–Bernoulli beam, respectively.

16 26 3111
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1 41

kt,21 kt,36
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21

m6, J6, e6
m21, J21, e21 m36, J36, e36

kr,6 kr,21 kr,36

kt,6

Fig. 6. A three-step P–P beam carrying three identical sets of concentrated elements. Each set of attachments includes a lumped mass mi

(with rotary inertia Ji and eccentricity ei), a translational spring kt;i and a rotational spring kr;i, located at station Nos. 6, 21 and 36 (i.e.,

i ¼ 6; 21; 36), respectively. The magnitudes of the elements are: mi ¼ ~m ¼ 11:09833kg, Ji ¼ 0:1 ~J ¼ 4:439332kgm2, ei ¼ 0:01L ¼ 0:02m,

kt;i ¼
~kt ¼ 1:0278� 103 N=m and kr;i ¼

~kr ¼ 4:1112� 103 Nm. The diameters of the three stepped beam segments are: d1 ¼ 0:03m,

d2 ¼ 0:04m, d3 ¼ 0:05m. (The unit for all the lengths in the figure is ‘‘meter’’.)
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From Tables 7(a) and (b) one finds that the lowest five natural frequencies of the Timoshenko beam are only
slightly smaller than the corresponding ones of the Euler–Bernoulli beam, because the slenderness ratio of the
current P–P beam is small. For convenience of comparison, the reducing rates of the lowest five natural
frequencies of the Timoshenko beam in the loading condition of Case 5 (o1Timosh to o5Timosh) with respect to
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1st mode for Case 5 (obtained from LTMM1)
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Fig. 7. The lowest five mode shapes of the ‘‘stepped’’ Euler–Bernoulli beam carrying three identical sets of concentrated elements located

at station Nos. 6, 21 and 36, respectively, as shown in Fig. 6: —K—, —þ—, —m—, —’—, —%— obtained from LTMM1; - - -	- - -,

- - -�- - -, - - -n- - -, - - -&- - -, - - -$- - - obtained from FEM.
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the corresponding ones of the Euler–Bernoulli beam (o1Euler to o5Euler) are listed in the parentheses ð:Þ of Table
7(b). They are calculated from the formula: �n% ¼ ðonTimosh � onEulerÞ � 100%=onEuler. It is evident that the
percentage difference increases with the vibration modes. In Tables 7(a) and (b) the natural frequencies
associated with the last percentage differences are underlined.

The lowest five mode shapes of the Euler–Bernoulli beam in loading condition of Case 5 are shown in Fig. 7.
Where the curves (—K—, —þ—, —m—, —’—, —%—) are obtained from LTMM1 and those (- - -	- - -,
- - -�- - -, - - -n- - -, - - -&- - -, - - -$- - -) from FEM with the symbolsK (or	), þ (or �), m (or n),’ (or&)
and % (or $) denoting the 1st, 2nd, 3rd, 4th and 5th mode shapes, respectively. Because the agreement
between the lowest five natural frequencies obtained from LTMM1 and the corresponding ones from FEM is
excellent as shown in Table 7(a), so is the corresponding lowest five mode shapes shown in Fig. 7. It has been
found that the last conclusion for the mode shapes of Euler–Bernoulli beam is also available for the lowest five
mode shapes of the Timoshenko beam with its lowest five natural frequencies shown in Table 7(b).

5. Conclusions
1.
 Based on the formulation for a ‘‘free–free’’ beam carying a number of sets of concentrated elements with
each set consisting of a lumped mass (with or without rotary inertia and/or eccentricity), a translational
spring and a rotational spring, one may easily determine the lowest several natural frequencies and the
corresponding mode shapes of a uniform or non-uniform beam with either classical or non-classical
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boundary conditions by using the LTMM1 presented in this paper. To achieve the last goal, the only thing
that one should do is to adjust the magnitudes of the stiffness constants of the translational spring and/or
the rotational spring attached to each station together with the magnitudes of the cross-sectional area and
length of the relevant beam segment.
2.
 In most of the existing LTMM0, the shear deformation and rotary inertia of the beam segments and the
eccentricities of the attached lumped masses are neglected, but all of these factors have been considered in
the formulation of LTMM1. Therefore, most of the problems studied in the existing literature concerned
can be easily solved with the presented LTMM1.

Appendix. Frequency equations and initial parameters for the ‘‘classical’’ LTMM0

Following the similar steps of arriving at the frequency equation (32) and the initial parameters given
by Eq. (33) for a ‘‘free–free’’ (F–F) beam, one may obtain the corresponding ones for the pinned–pinned
(P–P), clamped–clamped (C–C), clamped–free (C–F) and clamped–pinned (C–P) beams from their boundary
conditions and Eq. (28), respectively:

(i) For the P–P beam

DðoÞ ¼
T12 T14

T32 T34

�����
����� ¼ 0, (A.1a)

fdg0 ¼ ½0 1 0 � T12=T14�
T. (A.1b)

(ii) For the C–C beam

DðoÞ ¼
T13 T14

T23 T24

�����
����� ¼ 0, (A.2a)

fdg0 ¼ ½0 0 1 � T13=T14�
T. (A.2b)

(iii) For the C–F beam

DðoÞ ¼
T33 T34

T43 T44

�����
����� ¼ 0, (A.3a)

fdg0 ¼ ½0 0 1 � T33=T34�
T. (A.3b)

(iv) For the C–P beam

DðoÞ ¼
T13 T14

T33 T34

�����
����� ¼ 0, (A.4a)

fdg0 ¼ ½0 0 1 � T13=T14�
T. (A.4b)
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